Neonatal isolation changes the expression of IGF-IR and IGFBP-2 in the hippocampus in response to adulthood restraint stress

Kaori Erabi1, Shigeru Morinobu1, Ki-ichiro Kawano1, Seiichi Tsuji1,2 and Shigeto Yamawaki1

1 Department of Psychiatry and Neurosciences, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Japan
2 National Hospital Organization, Kamo Psychiatry Medical Center, Japan

Abstract

Early adverse experiences are thought to contribute to the development of stress vulnerability, and to increase the onset of stress-related psychiatric disorders in stressful environments in adulthood. One plausible molecular mechanism of stress vulnerability is the modulation of neurotrophic factor signal transduction in the hippocampus by early adversity. In the present study we investigated the influence of neonatal isolation (NI) with or without adulthood single restraint stress (SRS) on the expression of several growth factor-related genes in the rat hippocampus using a cDNA microarray, real-time quantitative PCR, and Western blot. We found that hippocampal insulin-like growth factor-I receptor (IGF-IR) mRNA levels and immunoreactivity, and IGF binding protein-2 (IGFBP-2) mRNA levels were significantly lower in response to SRS in NI rats compared with rats without NI. Immunohistochemical analyses revealed that hippocampal IGF-IR immunoreactivity in the CA1 and CA3 pyramidal cell layers, and in the dentate gyrus granule cell layer of NI rats subjected to SRS was significantly lower compared with rats subjected to SRS. In addition, the hippocampal levels of IGF-IR mRNA were significantly lower in adult rats subjected to NI. These findings indicate that NI down-regulates IGF signal transduction under basal and stressful conditions in later life. Since the activation of IGF signalling plays a role in the development and neuro-protection of the central nervous system, the down-regulation of IGF signal transduction induced by NI may be, at least in part, involved in the development of adulthood stress vulnerability, which in turn precipitates the onset of depression.

Received 30 November 2005; Reviewed 8 January 2006; Revised 3 April 2006; Accepted 10 April 2006; First published online 19 July 2006

Key words: Hippocampus, insulin-like growth factor-I receptor, insulin-like growth factor binding protein-2, neonatal isolation, stress vulnerability.

Introduction

Numerous epidemiological studies reveal that early adverse experiences are closely associated with an increased risk of stress-related psychiatric disorders in adulthood, such as major depression and post-traumatic stress disorder (PTSD) (Bifulco et al., 1991; Harris et al., 1986; Widom, 1999). Although the precise mechanism for the precipitation of the onset of stress-related psychiatric disorders remains to be determined, it has been postulated that early life adversity causes the development of stress vulnerability and subsequently induces the onset of psychiatric disorders under stressful environmental conditions in adulthood. For example, various studies using rats and non-human primates have demonstrated that early adverse experience including neonatal isolation (NI), maternal separation, and poor maternal care is associated with enhanced activity of the hypothalamic–pituitary–adrenal (HPA) axis in response to adulthood restraint stress (Liu et al., 1997; McCormick et al., 2002; Meaney et al., 1996; Plotsky and Meaney, 1993), anxiety-like behaviour (Huot et al., 2001; Wigger and Neumann, 1999), or impairment of spatial memory acquisition (Huot et al., 2002) in adulthood.
In addition to hippocampal dysfunction, morphological changes in the hippocampus may also play an important role in the pathophysiology of depression and PTSD. Clinical studies using MRI-based volumetric analysis showed significant reduction of the hippocampal volume of patients with PTSD or major depression both with (Bremner et al., 2003; Vythilingam et al., 2002) and without an early adverse experience (Bremner et al., 1995, 2000; Sheline et al., 1999). Similarly, hippocampal atrophy in animals in response to stress has also been demonstrated. Prior studies have demonstrated that exposure to stress induces marked neuronal degeneration of hippocampal neurons in vervet monkeys (Uno et al., 1989), atrophy of the apical dendrites of CA3 pyramidal neurons in the rat hippocampus (Watanabe et al., 1992), and a reduction in the proliferation of granule cell precursors in the dentate gyrus (Gould et al., 1997, 1998). Further studies on the mechanism of stress-induced neurobiological changes in the hippocampus proposed that the modulation of neurotrophic factors and their receptors was closely associated with altered hippocampal structure (Molteni et al., 2001; Scaccianoce et al., 2000; Smith et al., 1995; Ueyama et al., 1997). Based on these findings, it is conceivable that early adversity affects the expression of neurotrophic factors and their receptors in the rat hippocampus during maturation, and consequently leads to stress vulnerability in adulthood. Some studies have examined the influence of early adverse experience on the expression of neurotrophic factors, members of the neurotrophin gene family, such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3) in rodent hippocampus (Cirulli et al., 2000; Greisen et al., 2005; MacQueen et al., 2003; Roceri et al., 2004; Roceri et al., 2002).

Growth factors such as epidermal growth factor (EGF), fibroblast growth factor (FGF), transforming growth factor (TGF), or insulin-like growth factor (IGF) are also reported to be involved in the development and survival of the central nervous system (CNS) (Cameron et al., 1998). One study recently demonstrated a significant reduction of IGF-II mRNA in the hippocampus with the choroid plexus of adult rats subjected to maternal separation (Kohda et al., 2006), however, the influence of NI on the expression of growth factors, their receptors, or their binding proteins in adult rat hippocampus has not yet been fully elucidated. Furthermore, it is also unknown as to whether adulthood stress can produce a significant change in the expression of growth factors, and their receptors and binding proteins in the hippocampus of rats subjected to early adversity. In this study, we investigated the influence of NI with or without adulthood restraint stress on the expression of several growth factors, and their receptors and binding proteins in the rat hippocampus using a cDNA microarray, real-time quantitative PCR, Western blot, and immunohistochemistry.

Materials and methods

Animals

Pregnant female Sprague–Dawley rats were purchased from Charles River Japan (Yokohama, Japan). The rats were housed individually in a breeding colony at constant room temperature (23 ± 2°C) and humidity (60%) with a 12 h light/dark cycle (lights on 08:00 to 20:00 hours). Food and water were provided ad libitum. The litters were culled to 12 pups on postnatal day 1 (PN day 1).

NI and single restraint stress (SRS) paradigm

The mothers and pups of the non-isolated group were left undisturbed until weaning (Figure 1). NI was conducted according to the method of Kehoe and Bronzino (1999). Pups were isolated from the dam, nest, and siblings and placed in individual round containers for 1 h per day on PN days 2–9 (Figure 1). All litters were weaned on PN day 21, separated on the basis of sex, and maintained with ad libitum access to food and water. Only the male rats were subjected to the following experimental procedure. On PN day 90, half of both the NI and non-isolated rats were subjected to a SRS for 2 h (Figure 1). The restraint stress was conducted as described previously (Suenaga et al., 2004). Briefly, rats were restrained using a clear polyethylene disposable bag (Asahikasei, Tokyo, Japan). Animals were sacrificed by decapitation after completion of the restraint stress. On PN day 90, NI and non-isolated rats (sham) were sacrificed by decapitation (Figure 1). Two groups of adult rats [one group subjected to repeated NI followed by SRS (NI+SRS); the second group subjected to SRS (SRS)] were used for DNA microarray analysis, Western blot analysis, and immunohistochemistry. Four groups of adult rats [subjected to NI followed by SRS (NI+SRS); NI alone (NI); SRS alone (SRS); or sham treatment (sham)] were used for real-time quantitative PCR. For the measurement of plasma corticosterone levels, both sham and NI rats were subjected to SRS for different durations. A total of 116 rats were used in the study and a different set of rats was used for each of the methods (i.e. DNA microarray, real-time quantitative PCR, Western
blotting, immunohistochemistry, and plasma corticosterone levels). The hippocampus was isolated and used for DNA microarray, real-time quantitative PCR, and Western blot analysis. In this procedure, the lateral choroid plexus was carefully removed from the hippocampus. For immunohistochemistry, brains were removed rapidly, immediately frozen, and stored at -70°C. All animal procedures were conducted in accordance with the Guiding Principles on Animal Experimentations in Research Facilities for Laboratory Animal Science Hiroshima University and approved by Hiroshima University Animal Care Committee.

DNA microarray

For the DNA microarray analysis, the ExpressChip™ DNA Microarray System RO1 (Mergen, San Leandro, CA, USA) containing 1152 genes was used. The ExpressChip arrays were pre-spotted with oligonucleotide sequences designed to determine the expression of target genes with the highest specificity. The experiments were carried out according to the manufacturer’s protocol. In brief, total RNA was extracted from the hippocampi of five adult rats in each group (NI + SRS, SRS) with an RNAqueous Phenol-free Total RNA Isolation kit (Ambion, Austin, TX, USA), and pooled. After treatment with RNase-free DNase I (Takara, Kusatsu, Japan) for the removal of DNA, first-strand cDNA was synthesized using oligo(dT)$_{24}$ T7 promoter$_{65}$ primer from DNase-treated total RNA, and then double-stranded cDNA was synthesized with T4 DNA polymerase. Biotin-labelled cRNA probes produced from the double-stranded cDNA template were hybridized to microarrays overnight at 30°C. The arrays were washed, and incubated with streptavidin, anti-streptavidin antibody, and finally, secondary antibody conjugated Cyanine-3 fluorescent dye (Cy3). Signals were detected with a GMS417 array scanner (Affymetrix, Santa Clara, CA, USA), and spot intensity was analysed using Image (BioDiscovery, El Segundo, CA, USA). The relative expression level of each gene was normalized against housekeeping gene controls.

Real-time quantitative PCR

Total RNA was extracted with an RNAqueous Phenol-free Total RNA Isolation kit (Ambion). After treatment with RNase-free DNase I (Takara), real-time quantitative PCR was performed with an ABI PRISM 7700 sequence detection system (PE Applied Biosystems, Foster City, CA, USA) to quantitate relative mRNA levels in samples. Real-time quantitative PCR was performed to amplify insulin-like growth factor-I (IGF-I), insulin-like growth factor-II (IGF-II), and...
insulin-like growth factor-I receptor (IGF-IR), insulin-like growth factor-II receptor (IGF-IIR), and insulin-like growth factor binding protein-2 (IGFBP-2). The primers and TaqMan hybridization probe were designed using Primer Express software (PE Applied Biosystems). Table 1 shows the sequences and fluorescent dye of PCR primers and TaqMan probes for each molecule. The TaqMan probes, which were designed to hybridize to the PCR products, were labelled with a fluorescent reporter dye at the 5'-end and a quenching dye at the 3'-end. PCR was carried out with TaqMan Universal PCR Master Mix (PE Applied Biosystems). All standards and samples were assayed in triplicate. Each plate contained the same standard. Thermal cycling was initiated with an initial denaturation at 50 °C for 2 min and 95 °C for 10 min. After this initial step, 40 cycles of PCR (heating at 95 °C for 15 s and 60 °C for 1 min) were performed. The PCR assay for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was performed using TaqMan Rodent GAPDH Control Reagents (PE Applied Biosystems). PCR assays for unknown samples were performed simultaneously with standard samples (rat brain tissue) to construct a standard curve. The relative concentrations of GAPDH and IGF-I, IGF-II, IGF-IR, IGF-IIR, or IGFBP-2 in unknown samples were calculated from this standard curve and the ratio of the relative concentration of IGF-I, IGF-II, IGF-IR, IGF-IIR, or IGFBP-2 was calculated relative to the concentration of GAPDH.

Western blot

Immunoblot analyses for IGF-IR and IGFBP-2 were performed by the method of Cardona and colleagues (2000) with a minor modification. In brief, the rat hippocampus was homogenized on ice with a Polytron homogenizer at top speed (30,000 rpm) in homogenization buffer containing 20 mM Tris–HCl (pH 7.5), 5 mM EDTA, 2 mM DTT, 150 mM NaCl, 0.5% Triton X-100, 1 µg/ml aprotinin, 1 µg/ml leupeptin, and 100 µM phenylmethylsulphonyl fluoride. The insoluble material was removed by centrifugation at 10,000 g at 4 °C for 10 min. Protein concentrations were determined with a protein assay kit (Bio-Rad, Hercules, CA, USA). Equal amounts of protein (60 µg) for each group were fractionated using sodium dodecyl sulphate (SDS) gel (7.5% for IGF-IR, and 12.5% for IGFBP-2; Atto, Tokyo, Japan) and transferred to a PVDF membrane (for IGF-IR) or a nitrocellulose membrane (for IGFBP-2) using a semi-dry blotting apparatus (Bio-Rad). Nitrocellulose membrane was incubated with Miser™ Antibody Extender Solution NC (Pierce, Rockford, IL, USA) before blocking. All membranes were blocked at room temperature for 1 h in TBS containing 5% non-fat dry milk and 0.05% Tween-20 (TBST-MLK), and then incubated overnight with anti-IGF-IR β-chain antibody (1:500 dilution; sc-713, Santa Cruz Biotechnology, Santa Cruz, CA, USA) in TBST-MLK, or anti-IGFBP-2 antibody (1:1000 dilution; no. 06-107, Upstate Biotechnology, Lake Placid, NY, USA) in Solution 1 of Can Get Signal™ (Toyobo, Osaka, Japan) as a primary antibody, overnight at 4 °C. The membranes were washed at room temperature in TBST four times for 5 min per wash, and then incubated with horseradish peroxidase-conjugated anti-rabbit IgG antibody (1:2000 dilution for IGF-IR, 1:20000 dilution for IGFBP-2; Zymed, San Francisco, CA, USA) in TBST-MLK, or anti-IGFBP-2 antibody (1:1000 dilution; no. 06-107, Upstate Biotechnology, Lake Placid, NY, USA) in Solution 1 of Can Get Signal™ as a secondary antibody. The blots were developed using an Enhanced Chemiluminescence (ECL) Western Blotting Detection System (Amersham Pharmacia Biotech, Buckinghamshire, UK). The blots were reprobed with anti-β-actin antibody (Sigma Chemical Co., St. Louis, MO, USA) to ensure equal protein loading. The density of the immunoreactive bands was quantified with Atto Image analysis software (version 4.0 for Macintosh; Atto).

Immunohistochemistry

Freshly frozen coronal brain sections (15 µm) through the hippocampus were cut in a cryostat, thaw-mounted onto slides and fixed with 4%
paraformaldehyde for 5 min. Sections were washed three times with PBST (PBS-0.1% Triton X-100) and pretreated with 10% H$_2$O$_2$ in methanol to neutralize the endogenous peroxidase activity. Then, the sections were washed twice in PBST for 10 min. After being blocked in 10% sheep serum in PBST for 60 min, the sections were incubated overnight at 4 °C with anti-IGF-IR monoclonal antibody (1:100 dilution; MAB1123, Chemicon, Temecula, CA, USA) or anti-IGFBP-2 antibody (1:1000 dilution; no. 06-107, Upstate Biotechnology) in 10% sheep serum in PBST. After four 10 min washes in PBST, the sections were incubated at room temperature for 180 min with goat anti-mouse IgG (H+L) HRP conjugate (1:200 dilution for IGF-IR, 1:1000 dilution for IGFBP-2; Zymed) in 10% sheep serum in PBST. The sections were then washed four times in PBST for 10 min per wash and exposed with liquid DAB+substrate chromogen solution (Dako, Carpinteria, CA, USA). The immunohistochemical signal for IGF-IR and IGFBP-2 was detected using a digital video image analyser (Keyence BZ-8000, Osaka, Japan). The mean density of sections from the SRS and NI+SRS groups was measured in the CA1 and CA3 regions, granule cell layer and hilus of the dentate gyrus using the NIH Scion Image analysis program.

Measurement of plasma corticosterone levels

Blood samples were collected before SRS, and 30 min and 2 h after the beginning of SRS in NI and non-NI rats. After centrifugation (500 g at 4 °C for 30 min), plasma samples were frozen and stored at −70 °C until the day of analysis. The plasma corticosterone level was determined using a rat corticosterone [125I] assay system (Amersham Pharmacia Biotech).

Statistical analyses

Results were expressed as mean ± S.E.M. The results of real-time quantitative PCR were analysed by two-way analysis of variance (ANOVA) (NI × SRS) followed by Scheffe’s test. The levels of plasma corticosterone were analysed by 2 × 3 ANOVA (NI × time after the beginning of SRS) followed by Scheffe’s test. For results analysed by ANOVA, the degrees of freedom were presented. For Western blot and immunohistochemical analyses the results of experiments containing two groups of rats were analysed by Mann–Whitney U test, and the results of the experiment on IGFBP-2 immunoreactivity at different intervals after the termination of SRS for 2 h was analysed by one-way ANOVA followed by Scheffe’s test. Significance was set at $p<0.05$.

![Figure 2. Plasma corticosterone concentrations before (0 min) and after the beginning of single restraint stress (SRS) (30 min, 2 h) in neonatal isolation (NI; □) and non-NI (■) adult rats. The mean ± S.E.M. (n = 6) is shown. * $p<0.01$ compared to non-NI group (2 × 3 ANOVA followed by Scheffe’s test).](http://ijnp.oxfordjournals.org/)

Results

The influence of NI on the levels of plasma corticosterone

Statistical analysis of the plasma corticosterone levels revealed that there was a significant interaction between NI and restraint time [$F(2, 30) = 7.697$, $p = 0.002$]. While there were no differences in the plasma corticosterone levels between NI and non-NI rats before SRS or 30 min after the beginning of SRS, there was the significant difference in the levels of plasma corticosterone between NI and non-NI rats 2 h after the beginning of SRS ($p < 0.01$) (Figure 2).

The influence of NI on the levels of IGF-I, IGF-IR, IGF-II, IGF-IIR, and IGFBP-2 mRNA in response to a SRS in adulthood

Differences in the hippocampal expression of growth factors and related genes between the SRS and NI+SRS groups at PN day 90 were analysed using an ExpressChip™ (Table 2). With a cut-off of 2.0-fold change, the expression of several genes involved in the IGF signal transduction (IGF-I, IGF-IR, IGF-II, IGF-IIR, and IGFBP-2) in the NI+SRS group was different from that in the SRS group. To confirm the difference in the mRNA levels of these genes between the SRS and NI+SRS group, we performed real-time quantitative PCR analysis using a different set of animals from the microarray analysis. For IGF-I mRNA expression, two-way ANOVA showed no significant effect of NI [$F(1, 28) = 0.109$, $p = 0.744$], or SRS [$F(1, 28) = 1.125$, $p = 0.298$], and no significant interaction between NI and SRS [$F(1, 28) = 0.035$, $p = 0.853$] (Figure 3a).
IGF-IR mRNA expression, there was a significant effect of NI \([F(1, 28) = 19.972, p < 0.001]\) as well as SRS \([F(1, 28) = 30.890, p < 0.001]\) but there was no significant interaction between NI and SRS \([F(1, 28) = 0.062, p = 0.806]\) (Figure 4a). Post-hoc analysis revealed that the level of IGF-IR mRNA \((p < 0.05)\) in the NI+SRS group was significantly lower than that in the SRS group (Figure 4a). In addition, the level of IGF-IR mRNA in the NI group was significantly lower \((p < 0.05)\) than that in the sham group (Figure 4a). IGF-II mRNA expression, two-way ANOVA showed total RNA was isolated from the hippocampi of five rats in the NI+SRS and SRS groups, and subjected to the ExpressChip™ (Mergen, San Leandro, CA, USA) followed by analyses with the ImaGene (BioDiscovery).

Table 2. Hippocampal expression of growth factors and related genes

<table>
<thead>
<tr>
<th>Genbank ID</th>
<th>Gene</th>
<th>Fold change SRS/NI+SRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>U04842</td>
<td>Epidermal growth factor (EGF)</td>
<td>1.1</td>
</tr>
<tr>
<td>M37394</td>
<td>EGF receptor</td>
<td>1.1</td>
</tr>
<tr>
<td>X14232</td>
<td>Fibroblast growth factor (FGF) 1 (heparin binding)</td>
<td>8.7</td>
</tr>
<tr>
<td>M22427</td>
<td>FGF2</td>
<td>1.0</td>
</tr>
<tr>
<td>D64085</td>
<td>FGF5</td>
<td>1.0</td>
</tr>
<tr>
<td>D14839</td>
<td>FGF9</td>
<td>0.7</td>
</tr>
<tr>
<td>D79215</td>
<td>FGF10</td>
<td>1.3</td>
</tr>
<tr>
<td>A004638</td>
<td>FGF18</td>
<td>0.9</td>
</tr>
<tr>
<td>S54008</td>
<td>FGF receptor 1, complete cds</td>
<td>1.5</td>
</tr>
<tr>
<td>L19109</td>
<td>Heparin binding FGF receptor 2 (intracellular domain) mRNA</td>
<td>1.8</td>
</tr>
<tr>
<td>L19104</td>
<td>Heparin binding FGF receptor 2 (extracellular domain) mRNA</td>
<td>2.3</td>
</tr>
<tr>
<td>U57715</td>
<td>FGF receptor activating protein (FRAG1) mRNA, complete cds</td>
<td>1.4</td>
</tr>
<tr>
<td>D90102</td>
<td>Hepatocyte growth factor</td>
<td>1.0</td>
</tr>
<tr>
<td>M15651</td>
<td>Insulin-like growth factor (IGF)-I</td>
<td>2.2</td>
</tr>
<tr>
<td>X14834</td>
<td>IGF-II</td>
<td>2.4</td>
</tr>
<tr>
<td>M37807</td>
<td>IGF-I receptor</td>
<td>4.1</td>
</tr>
<tr>
<td>U59809</td>
<td>IGF-II receptor</td>
<td>3.0</td>
</tr>
<tr>
<td>M58634</td>
<td>IGF-binding protein (IGFBP) 1</td>
<td>0.5</td>
</tr>
<tr>
<td>J04486</td>
<td>IGFBP2</td>
<td>4.8</td>
</tr>
<tr>
<td>M31837</td>
<td>IGFBP3</td>
<td>1.3</td>
</tr>
<tr>
<td>M62781</td>
<td>IGFBP5</td>
<td>1.3</td>
</tr>
<tr>
<td>M69055</td>
<td>IGFBP6</td>
<td>1.0</td>
</tr>
<tr>
<td>M29014</td>
<td>Insulin receptor</td>
<td>0.8</td>
</tr>
<tr>
<td>X56551</td>
<td>Keratinocyte growth factor</td>
<td>1.6</td>
</tr>
<tr>
<td>L14447</td>
<td>Neurotrophic tyrosine kinase, receptor, type 3 (Ntrk3)</td>
<td>1.3</td>
</tr>
<tr>
<td>M36589</td>
<td>Beta-nerve growth factor gene, last exon</td>
<td>1.3</td>
</tr>
<tr>
<td>M55291</td>
<td>Neuronal receptor protein-tyrosine kinase (trkB)</td>
<td>1.6</td>
</tr>
<tr>
<td>L06238</td>
<td>Platelet-derived growth factor (PDGF) A-chain mRNA</td>
<td>0.6</td>
</tr>
<tr>
<td>M63837</td>
<td>PDGF receptor alpha</td>
<td>0.9</td>
</tr>
<tr>
<td>M31076</td>
<td>Transforming growth factor (TGF) alpha</td>
<td>1.1</td>
</tr>
<tr>
<td>X52498</td>
<td>TGF beta 1</td>
<td>2.0</td>
</tr>
<tr>
<td>U03491</td>
<td>TGF beta 3</td>
<td>0.7</td>
</tr>
<tr>
<td>M77809</td>
<td>TGF beta receptor III</td>
<td>3.2</td>
</tr>
<tr>
<td>M55431</td>
<td>TGβ-beta masking protein large subunit, complete cds</td>
<td>1.0</td>
</tr>
<tr>
<td>L00981</td>
<td>Tumour necrosis factor (TNF) alpha</td>
<td>1.5</td>
</tr>
<tr>
<td>M63122</td>
<td>TNF receptor</td>
<td>1.0</td>
</tr>
<tr>
<td>X05137</td>
<td>NGF receptor, fast</td>
<td>1.1</td>
</tr>
<tr>
<td>M32167</td>
<td>Vascular endothelial growth factor (VEGF) mRNA, partial cds</td>
<td>0.9</td>
</tr>
<tr>
<td>AF014827</td>
<td>VEGF-D mRNA, complete cds</td>
<td>1.9</td>
</tr>
</tbody>
</table>
no significant effect of NI \[F(1, 23) = 0.444, p = 0.512 \], or SRS \[F(1, 23) = 0.034, p = 0.854 \], and no significant interaction between NI and SRS \[F(1, 23) = 2.440, p = 0.132 \] (Figure 3b). For IGF-IIR mRNA expression, two-way ANOVA showed no significant effect of NI \[F(1, 28) = 0.439, p = 0.513 \], or SRS \[F(1, 28) = 0.582, p = 0.452 \], and no significant interaction between NI and SRS \[F(1, 28) = 0.010, p = 0.921 \] (Figure 4b). For IGFBP-2 mRNA expression, two-way ANOVA showed that there was a significant interaction between NI and SRS \[F(1, 24) = 19.098, p < 0.001 \] (Figure 5). Post-hoc analysis revealed a significant (\(p < 0.01 \)) increase in the levels of IGFBP-2 in the SRS group as compared with the other groups (Figure 5).

Hippocampal IGF-IR and IGFBP-2 immunoreactivity in SRS and NI+SRS rats in adulthood

To elucidate whether the significant differences in IGF-IR and IGFBP-2 mRNA expression between the SRS and NI+SRS groups (shown by real-time PCR...
analysis) affected the protein level of these genes, the levels of IGF-IR and IGFBP-2 protein were measured by Western blotting. Western blot analysis revealed significantly lower IGF-IR immunoreactivity in the NI+SRS group than in the SRS group (p < 0.05) (Figure 6). However, there was no significant difference in the immunoreactivity of IGFBP-2 between the SRS and NI+SRS groups (Figure 7).

Since no significant difference in IGFBP-2 immunoreactivity was found between the NI and non-NI rats immediately after SRS for 2 h, we determined the levels of hippocampal IGFBP-2 immunoreactivity at different intervals after the termination of SRS for 2 h in adult non-isolated rats. IGFBP-2 immunoreactivity in adult rats sacrificed at 8 h, but not 2 h or 4 h, after the termination of SRS was significantly higher than in rats without SRS (p < 0.05) (Figure 8).

To identify the hippocampal cell layers in which IGF-IR immunoreactivity in the NI+SRS group was down-regulated, we examined IGF-IR immunoreactivity by immunohistochemistry. Hippocampal IGF-IR immunoreactivity in the CA1 and CA3 pyramidal cell layers and in the granule cell layer and hilus of the dentate gyrus was significantly decreased in NI+SRS rats compared with SRS rats (p < 0.05) (Figures 9, 10). We also conducted immunohistochemical analysis to determine regional differences in IGFBP-2 immunoreactivity between the SRS and NI+SRS rats (Figure 11). However, hippocampal IGFBP-2 immunoreactivity in the CA1 and CA3 pyramidal cell layers and granule cell layer and hilus of the dentate gyrus did not differ between the two groups (data not shown).

Discussion

Since a stressful environment in later life readily disrupts the homeostasis of neurotransmitters and hormones in individuals with early adversity (Heim et al., 2000; Meaney et al., 2002; Plotsky and Meaney, 1993), and subsequently may induce changes in gene expression in the CNS, early adverse experiences are thought to precipitate stress vulnerability in adulthood. However, the precise molecular mechanism for the development of the stress vulnerability remains to be determined. In this context, we
examined differences in hippocampal gene expression profiles between rats, with and without NI, in response to adulthood SRS for 2 h. As shown in the present study, SRS for 2 h led to a significant difference in plasma corticosterone levels between SRS and NI+SRS rats, indicating that stress vulnerability induced by NI occurred in this stressful condition. We showed that repeated NI affected IGF-IR mRNA levels and immunoreactivity, and IGFBP-2 mRNA levels in the hippocampus in response to SRS for 2 h in adult rats. In addition, the levels of IGF-IR mRNA in the hippocampus were significantly decreased in adult rats subjected to NI.

Since it is well known that neurotrophic factors play an important role in synaptic formation and cell differentiation during development (Berninger and Poo, 1996; Henderson, 1996), several studies were previously undertaken to examine the influence of maternal separation on the expression of BDNF mRNA in the brain, and to elucidate the mechanism for the development of stress vulnerability in response to early adversity. Almost all studies showed that maternal separation significantly decreased the levels of BDNF in adult rodents (Greisen et al., 2005; MacQueen et al., 2003; Roceri et al., 2002, 2004). In contrast to BDNF, only one study, to our knowledge, has examined the influence of maternal separation on IGF-II mRNA expression in adult rats (Kohda et al., 2006). Kohda and his associates have demonstrated that IGF-II mRNA expression in the hippocampus with the choroid plexus is significantly reduced in adult rats subjected to maternal separation. On the other hand, the result of the present study demonstrates that NI causes no change in the levels of IGF-II mRNA in the hippocampus of adult rats. While the reason for this difference is unclear, the difference in experimental procedures and brain regions may be associated with this discrepancy.

The IGF signalling system consists of IGFs (IGF-I and IGF-II), membrane receptors (IGF-IR and IGF-IIR),
and IGF binding proteins, and plays a pivotal role in the growth and development of various tissues (LeRoith and Roberts, 2003), including the CNS (D’Ercole et al., 1996; Feldman et al., 1997; Torres-Aleman, 1999). With respect to the function of the IGF system, IGF-IR is the primary mediator of IGF-I action (LeRoith et al., 1995). Transgenic mice lacking IGF-I or IGF-IR show severe brain growth retardation (Baker et al., 1993; Liu et al., 1993). Furthermore, transgenic mice overexpressing IGF-I in the brain show an increase in the total number of neurons and synapses in the dentate gyrus (O’Kusky et al., 2000), while IGF-I−/− mice show a decrease in the number of granule cells in the dentate gyrus (Cheng et al., 2001). Previous studies have shown that peripheral infusion of IGF-I induces neurogenesis in adult rat hippocampus (Aberg et al., 2000), and that IGF-I stimulates proliferation in adult rat hippocampal progenitor cells (Aberg et al., 2003). In this context, it is plausible that the significant decrease in hippocampal IGF-IR expression in response to NI with or without restraint stress may, at least in part, contribute to the disturbance of hippocampal function through the decrease of IGF-I signal transduction.

IGFBPs act as carriers of IGFs, affect the half-lives of IGFs, and modulate the action of IGFs (D’Ercole et al., 1996; Jones and Clemmons, 1995). In the present study, the levels of IGFBP-2 mRNA, but not IGFBP-2 immunoreactivity, immediately after the termination
of adulthood restraint stress for 2 h, were significantly lower in the hippocampus of rats subjected to NI. IGFBP-2 immunoreactivity was significantly increased at 8 h after the termination of SRS in adult rats without NI, and the slower response of IGFBP-2 protein to SRS in the hippocampus might be involved in this difference. Similarly, it was demonstrated that the induction of IGFBP-2 protein was slower than that of IGFBP-2 mRNA in primary astroglial cells in response to IGF-I (Bradshaw and Han, 1993).

It has been reported that the expression of IGFBP-2 and IGF-I mRNA is increased around the site of CNS injury. After hypoxia-ischaemia or cerebral cortical contusion in rats, the expression of IGFBP-2 mRNA as well as IGF-I is induced in the hippocampus (Beilharz et al., 1998; Sandberg Nordqvist et al., 1996). Injection of colchicine into the hippocampus of rats increases the expression of IGFBP-2 mRNA in the hippocampus and damaged cortex (Breese et al., 1996). These findings suggest that not only IGF-I but also IGFBP-2 responds to brain damage and produces neuroprotective effects. It appears that the lack of an increase of IGFBP-2 mRNA expression in response to adulthood restraint stress in rats subjected to NI may be, at least in part, involved in the lack of protection against adulthood stress.

Administration of venlafaxine or fluoxetine for 2 wk has been shown to up-regulate IGF-I protein levels in the hippocampus and to significantly increase the proliferation and survival of progenitor stem cells in the dentate gyrus (Khawaja et al., 2004). Recently, Hoshaw et al. (2005) have shown that central administration of IGF-I or BNDF exerts antidepressant-like effects in the forced swim test, and that the duration of effects is longer than that of traditional antidepressants. We hypothesize that the decrease in hippocampal IGF signal transduction by NI is one plausible mechanism by which early adverse experiences precipitate the onset of depression in adulthood under environmental stress conditions. Further studies examining whether NI with additional adulthood stress affects the activity of the intracellular signal transduction mediated by IGFs and IGF-receptors, are required to verify our hypothesis.

Acknowledgements

This study was supported by a grant-in-aid for general scientific research from the Ministry of Education, Science, and Culture of Japan, a Health Science Research Grant for Research on Brain Science from the Ministry of Health and Welfare of Japan, and a grant from Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology (J.S.T.).

We thank Professor Luis M. Garcia-Segura and Dr Pablo Mendez (Cajal Institute, Madrid, Spain) for their helpful advice on Western blotting.

Statement of Interest

None.

References

corticosteroids: from developmental events to adult brain plasticity. *Brain Research. Brain Research Reviews* 37, 249–258.

