Interaction of drugs of abuse and maintenance treatments with human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)

Nicolas Tournier1,2, Lucie Chevillard1,2, Bruno Megarbane1,2, Stéphane Pirnay1,2, Jean-Michel Scherrmann1,2 and Xavier Declèves1,2

1 Unité INSERM U705; CNRS, UMR 7157; Université Paris Descartes, France
2 Université Paris Diderot, France

Abstract

Drug interaction with P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) may influence its tissue disposition including blood–brain barrier transport and result in potent drug–drug interactions. The limited data obtained using in-vitro models indicate that methadone, buprenorphine, and cannabinoids may interact with human P-gp; but almost nothing is known about drugs of abuse and BCRP. We used in vitro P-gp and BCRP inhibition flow cytometric assays with hMDR1- and hBCRP-transfected HEK293 cells to test 14 compounds or metabolites frequently involved in addiction, including buprenorphine, norbuprenorphine, methadone, ibogaine, cocaine, cocaethylene, amphetamine, N-methyl-3,4-methylenedioxyamphetamine, 3,4-methylenedioxyamphetamine, nicotine, ketamine, D9-tetrahydrocannabinol (THC), naloxone, and morphine. Drugs that in vitro inhibited P-gp or BCRP were tested in hMDR1- and hBCRP-MDCKII bidirectional transport studies. Human P-gp was significantly inhibited in a concentration-dependent manner by norbuprenorphine > buprenorphine > methadone > ibogaine and THC. Similarly, BCRP was inhibited by buprenorphine > norbuprenorphine > ibogaine and THC. None of the other tested compounds inhibited either transporter, even at high concentration (100 μM). Norbuprenorphine (transport efflux ratio ~11) and methadone (transport efflux ratio ~1.9) transport was P-gp-mediated; however, with no significant stereo-selectivity regarding methadone enantiomers. BCRP did not transport any of the tested compounds. However, the clinical significance of the interaction of norbuprenorphine with P-gp remains to be evaluated.

Received 14 April 2009; Reviewed 5 May 2009; Revised 1 September 2009; Accepted 24 September 2009; First published online 4 November 2009

Key words: ABC transporters, buprenorphine, drug–drug interaction, drugs of abuse, methadone.

Introduction

The responses of individuals to drugs are influenced by a combination of pharmacokinetic and pharmacodynamic factors. The great variations in clinical responses in both abuse drugs and maintenance treatments from one individual to another may result in toxicity. Clinical reports clearly described wide dose–response ranges (Kadiev et al. 2008), as illustrated by the highly variable methadone (Met) doses required to accurately maintain heroin addicts (Levran et al. 2008). Highly polymorphic liver and intestine drug-metabolizing enzymes like cytochrome P450 (CYP) are generally believed to contribute to this variability in humans, also resulting in potent drug–drug interactions with other xenobiotics (Maurer et al. 2006). However, pharmacodynamic factors like the induction of tolerance to opioid effects also contribute greatly to drug variability.

Studies on drug transport involving ATP-binding cassette (ABC) transporters including P-glycoprotein (ABCB1, MDR1, P-gp) and breast cancer resistance protein (ABCG2, BCRP, MXR) are becoming more numerous. P-gp and BCRP are the major efflux transporters at the blood–brain barrier (BBB) (Scherrmann, 2005). We recently showed that P-gp and BCRP are the...
main ABC transporters at the human BBB (Dauchy et al. 2003). There are also more publications on the ABC-mediated transport of some drugs of abuse in vitro and animal models. Met has been shown to inhibit P-gp and be transported by it in vitro (Crettol et al. 2007; Störmer et al. 2001) and in vivo in rodents (Dagenais et al. 2004; Wang et al. 2004). Suzuki et al. (2007) described the P-gp-mediated transport of buprenorphine (Bup) at the mouse BBB but this was not demonstrated for human placental lobules (Nekhayeva et al. 2006) or caco-2 cells (Hassan et al. 2009). The transport of morphine by human P-gp in vitro remains controversial (Feng et al. 2008; Schinkel et al. 1995; Wandel et al. 2002) while naloxone (Nal) was not shown to be a P-gp substrate (Mahar Doan et al. 2002). However, the basolateral-to-apical polarized transport of cocaine across the endothelial cells of bovine brain microvessels suggests that cocaine is transported by bovine P-gp (Raje et al. 2003). In contrast, no evidence has been found for the transport of d-amphetamine, N-methyl-3,4-methylenedioxyamphetamine (MDMA), or 3,4-methylenedioxymethamphetamine (MDA) by P-gp in vitro (Bertelsen et al. 2006; Zhu et al. 2008), and nicotine does not seem to be a substrate of human P-gp (Wang et al. 2005).

Our analysis of the published literature shows that a wide range of very different experimental models have been used, which limits any extrapolation to the clinical setting. Several models are not specific to P-gp. Neither can data be compared directly or with reference to known P-gp substrates or inhibitors. Differences between species are rarely considered, so that a human-specific model is needed (Takeuchi et al. 2006). Finally, data on the interactions of drugs of abuse with human BCRP are lacking, except for the major cannabinoids from marijuana (Bonhomme-Faivre et al. 2008; Holland et al. 2006, 2007; Zhu et al. 2006a).

The impact of P-gp on the distribution of morphine (Kharasch et al. 2003) and Met was investigated in humans. The inhibition of P-gp enhanced the intestinal absorption of morphine and Met but had no significant pharmacodynamic effect at the BBB (Kharasch et al. 2004). P-gp gene polymorphism has recently been proposed to contribute in part to the variations in Met dose requirement in humans, suggesting that P-gp-mediated transport may influence its final activity (Levran et al. 2008). Moreover, drug interaction with transporters is a major concern as addicts may use all kinds of medications including antiretroviral, antipsychotic, antidepressant, and anxiolytic drugs that may be P-gp or BCRP substrates, thus resulting in deleterious drug–drug interactions (Antoniou & Tseng, 2002; Pal & Mitra, 2006).

In the present study we used a reproducible, validated, and highly specific in-vitro model to determine whether the common drugs of abuse and maintenance treatments are transported by, or inhibit, human P-gp and BCRP, leading to drug–drug interactions. We first used flow cytometric inhibition assays with hMDR1 and hBCRP-transfected HEK293 cells. The transport of the drugs that were found to interact significantly with transporters was then studied using bidirectional transport studies with hMDR1- and hBCRP-MDCKII cells.

Method

Chemicals

Bup hydrochloride and norbuprenorphine (norBup) were generously provided by Schering-Plough SA (USA). Cocaine hydrochloride, cocaethylene, MDMA, MDA, Δ⁹-tetrahydrocannabinol (THC), nicotine, ketamine hydrochloride, ibogaine hydrochloride (Ibo) and Nal hydrochloride dehydrate, calcein-AM, calcein, rhodamine-123 (Rh-123), Lucifer Yellow (LY) and mitoxantrone (MXR) were from Sigma-Aldrich (France). D-amphetamine sulfate was a gift from Marie-Claude Menet (Paris Descartes University). Morphine hydrochloride and racemic Met [(R,S)-Met] were from Francopia (France). PSC833 (valspodar) was a gift from Novartis (Switzerland). Fumitremorgine C (FTC) and pheophorbide-a (Ph-a) were kindly provided by Dr Robert W. Robey (National Institutes of Health, USA). [O-methyl-²H]buprenorphine ([²H]Bup; 80–85 Ci/mmol) was from American Radiolabelled Chemicals (USA) and [²H]prazosin (86.8 Ci/mmol) was from PerkinElmer Sciences (Belgium).

Cell culture

HEK293-hMDR1, HEK293-hBCRP (482R) and HEK293-pDNA (control cells) were provided by Dr Robert W. Robey. They were maintained in Eagle’s Minimum Essential Medium (ATCC, USA) with 2 mg/ml G418 (geneticin) from Invitrogen (France) to enforce the selection of stable transfectants. MDCKII-hMDR1, MDCKII-hBCRP and MDCKII parental cells were generously provided by Dr Alfred Schinkel (National Cancer Institute, The Netherlands) and were grown in Dulbecco’s Modified Eagle’s Medium (DMEM; Invitrogen). The media contained 10% heat-inactivated fetal bovine serum, glutamine, 100 U/ml penicillin, and 100 µg/ml streptomycin (Invitrogen). Cells were maintained in humidified 95% air/5% CO₂ at 37 °C and passaged twice a week.
Whole cell lysates and Western blotting

Western blotting experiments were conducted as previously described (Dauchy et al. 2008). Briefly, MDCKII and HEK293 cultures (90% confluent) in 75-ml culture flasks were lysed with buffer [50 mM Tris–HCl (pH 7.4), 150 mM NaCl, 0.5% sodium deoxycholate, 0.5% Triton X-100 and Complete™ protease inhibitor complex, Roche Diagnostics, France]. Protein samples were separated on 8% (P-gp) or 10% (BCRP) SDS–PAGE gels and electrotransferred to nitrocellulose membranes (Hybond, Amersham, France). The membranes were immunoblotted with anti-P-gp C219 (diluted 1:200), or anti-BCRP BXP-21 antibodies (1:200) (Abcam, UK) for 2 h at room temperature, then incubated with horseradish peroxidase-conjugated anti-mouse secondary antibody (1:10000) (Amersham, UK). The membranes were then exposed to the Amersham ECL system. Signals were revealed with the Bio-Rad ChemiDoc™ XRS imaging device (Bio-Rad, USA).

Flow cytometric efflux assays

P-gp inhibition

This assay was performed essentially as described by Robey et al. (2001). Briefly, log phase HEK293-transfected cells were harvested and suspended in incubation buffer (phenol red-free DMEM) supplemented with 10% FBS (10^6 cells/vial; 1 ml final volume). Specific inhibitors or test compounds were added during the accumulation phase. Vials were vortexed and the appropriate fluorescent probe added to the cell suspension. The vials were kept for 30 min at 37°C for the cells to take up the fluorescent probes. They were then washed (5 ml ice-cold PBS), centrifuged, and suspended in 1 ml incubation buffer containing inhibitors or test compounds at the same concentration as in the accumulation phase. All vials were then incubated at 37°C for 1 h to allow the efflux of fluorescent dye by transporters. Finally, cells were washed, suspended in 1 ml ice-cold PBS and kept on ice until used for flow cytometry. The P-gp inhibition assay with HEK293-hMDR1 cells required 1 μM calcine-AM or 1.5 μM Rh-123 as probe. No efflux phase was required for the calcine-AM assay, as this probe is rapidly hydrolysed by intracellular esterases to fluorescent calcine, which is not transported by P-gp. The positive control of P-gp inhibition was 5 μM PSC833.

BCRP inhibition

BCRP inhibition was assayed using HEK293-hBCRP cells as described above, using 10 μM MXR or 1 μM Ph-a. The specific BCRP inhibitor was 10 μM FTC. Rh-123 transport by BCRP-overexpressing cells was also investigated to ensure that the HEK-hBCRP cells produced wild-type BCRP (482R) and not a BCRP mutant (482T or 482G) that transports Rh-123 (Robey et al. 2003). Ph-a is also specifically transported by the 482R wild-type (Robey et al. 2004).

Intracellular fluorescence was measured using a Becton-Dickinson (USA) FACSCAN flow cytometer equipped with a 488-nm argon laser: 650-nm band-pass filter for MXR and Ph-a; and a 530-nm band-pass filter for calcine and Rh-123. Fifteen thousand events were collected for each sample. Cell debris was eliminated by gating on forward vs. side scatter. The maximal DMSO and ethanol concentrations were 1 and 0.5% (v/v); they did not affect BCRP activity. Vehicle concentrations in control and tested vials were always identical. Blank histograms for determining cell autofluorescence were prepared with cells in PBS and vehicle alone. The geometric mean (arbitrary units) of flow cytometry histograms was obtained with CellQuest® software (USA). The accumulation index reflected the inhibition potential of the tested drugs:

\[
\text{Accumulation index} = \frac{\text{geo mean}_{\text{molecule}}}{\text{geo mean}_{\text{without inhibitor}}}
\]

There were 100 μM of drug used for the initial inhibition tests. Lower concentrations were tested when flow cytometry indicated cell toxicity as for THC. Only drugs which inhibited the carrier-mediated transport of the fluorescent substrate at 100 μM were considered to be inhibitors and were further investigated. Drugs that were potent P-gp or BCRP inhibitors were also tested in HEK293-pcDNA cells to ensure that they did not induce transporter-independent intracellular accumulation of fluorophore. None of the drug (100 μM) caused auto-fluorescence in the absence of fluorescent dye at the instrument settings used.

Bidirectional transport

No transport studies were done with HEK293 cells because they adhered poorly in the two-compartment system. Molecules that inhibited transporters in the flow activated cell sorting (FACS) study were used when possible for bidirectional transport studies across monolayers of transfected MDCKII cells to test their transport by P-gp or BCRP. Cells were seeded at 3 × 10^5 cells/cm² onto 12-well Corning Costar Transwell® polycarbonate membranes (ATGC, France) and formed monolayers within 3 d. The culture medium was changed once, the day before experiment. Transport was measured in HBSS containing CaCl₂ and MgCl₂, 1 mM pyruvate and 10 mM...
The test compound with/without inhibitors, plus the transport medium containing Hepes (Invitrogen) in both compartments: apical-to-basolateral (A > B) and basolateral-to-apical (B > A). The culture medium was replaced with transport buffer with or without transport inhibitor in the 1 h pre-incubation. P-gp was inhibited with 5 μM PSC833 and BCRP with 10 μM FTC. MDCKII-hBCRP cells were systematically treated throughout with 2 μM PSC833 to block canine P-gp activity and enhance BCRP transport specificity. After pre-incubation, the donor compartment was filled with transport medium containing the test compound with/without inhibitors, plus 50 μM LY to check monolayer integrity. (R,S)-Met was tested at 5 μM and norBup at 10 μM to ensure detection in the opposite compartment: the limit of quantification (LOQ) of the analytical procedure. Bovine serum albumin (BSA, 1%) was added to [3H]Bup (0.2 μCi/ml), or up to 5 μM unlabelled Bup to avoid unspecific binding of Bup to the polystyrene plate. Monolayer efflux was stopped after 90 min for P-gp cells and 3 h for BCRP cells. The concentrations of the tested compounds and LY in the receiver compartment were determined. The transepithelial electrical resistance (TEER) was measured before and after the experiment with a Millicell® ERS ohm-meter (Millipore, France). The apparent permeability coefficient P_app was calculated from:

$$P_{app}(\text{nm/s}) = \frac{dQ_r}{dt} / (A \times C_A) \quad (1 \text{nm/s} = 1 \times 10^{-7} \text{cm/s}),$$

where dQ_r/dt is the amount accumulated in the receiver compartment over time; A is the area of the cell monolayer; and C_A is the initial concentration ($t=0$) of the test solution. Data are given as the average P_{app} (nm/s ± S.D.) from 6–9 monolayers. Monolayer integrity was considered as acceptable when LY P_{app} was ≤20 nm/s and TEER > 200 Ω cm². The transport ratio was determined by dividing the mean $P_{app(B>A)}$ by $P_{app(A>B)}$. Transport-mediated efflux was suggested when the transport ratio was >1.5 (Polli et al. 2001). P_{app} in the same direction in the presence and absence of inhibitor had also to be significantly different. Experimental conditions were validated using the P-gp substrate Rh-123 with MDCKII-hMDR1 cells, and the BCRP substrate [3H]prazosin with MDCKII-BCRP cells. Bidirectional studies were also performed on MDCKII-parental clones to estimate the involvement of basal canine transporters.

Analytical procedure

Rh-123 and LY were quantified using a Cytofluor series 4000 fluorescence plate reader (Applied Biosystem, France). [3H]prazosin and [3H]Bup were counted in a Tri-Carb model 1900 TR (Packard, France). Bup, norBUP and (R/S)-Met samples were frozen at ~20 °C, until quantified by LC–MS/MS. Bup and norBup were analysed as previously described (Pirnay et al. 2006). Separation of Met enantiomers was achieved using a Cyclobond I-2000 HP-RSP chiral column (250 mm × 4.6 mm i.d., 5 μm, Thermo Electron Corporation, USA) and single ion storage detection. LOQ was defined as 1 ng/ml for both Met enantiomers.

Statistical analysis

Unpaired two-tailed Student’s t tests were used to determine statistical significance between groups. The mean accumulation index had to be significantly >1 ($p<0.05$) to assess transporter inhibition potency by flow cytometry ($n=3$ minimum). Bidirectional transport data are presented as means ± s.d. for 6–9 independent values.

Results

P-gp and BCRP in HEK293 and MDRCK cells

Western blots of the whole HEK293–MDR1 and MDCKII–MDR1 cell lysates showed a major band at ~170 kDa, indicating high P-gp concentrations (Fig. 1a). Homogenates of MDCKII–MDR1 and parental MDCKII cells also gave a second more weakly stained band at ~140 kDa, which could be canine P-gp, as previously reported (Taub et al. 2005). Western blotting of HEK293-BCRP and MDCKII-BCRP cell homogenates using anti-BXP-21 anti-BCRP antibodies revealed an intense band at ~70 kDa, corresponding to a high BCRP concentration. A second less intense band at a higher molecular weight was assessed. The MDCKII and HEK293 parental cells showed no band at ~70 kDa (Fig. 1b).

Flow cytometric efflux assay

The inhibition potency of each tested compound towards human P-gp and BCRP was evaluated using specific fluorescent dyes that were transported by either P-gp or BCRP. HEK293-pcDNA cells accumulated much more fluorescent dye than did transporter-transfected cells, comparable to histograms obtained in the presence of inhibitors.

P-gp inhibition study

The capacity of a compound to inhibit P-gp was evaluated by measuring either the uptake of calcine-AM or the efflux of Rh-123 by HEK293-MDR1 cells in the presence or absence of the compound at 100 μM. P-gp-mediated calcine-AM transport was significantly inhibited as follows, starting with the most potent
compound: norBup > Bup > Met > Ibo. Their effect at 100 μM was comparable to that of the powerful P-gp inhibitor, 5 μM PSC833. THC also inhibited P-gp-mediated transport, but to a lesser extent. It was about 10-fold less potent than 5 μM PSC833.

Then, we measured the inhibitory potency of norBup, Bup, Met and Ibo at lower concentrations and found a concentration–effect relationship for all of them (Fig. 2). None of the other tested drugs (at 100 μM) had any significant effect on P-gp activity. Rh-123 was also used as a fluorescent P-gp substrate. Although PSC833 decreased the efflux of Rh-123 by P-gp ~150-fold, Met was the only compound that slightly inhibited P-gp-mediated transport of Rh-123 in a concentration-dependent manner. None of the other compounds had any significant influence on P-gp-mediated Rh-123 transport.

BCRP inhibition study

The capacity of a drug to inhibit BCRP was also evaluated by measuring the efflux of BCRP substrates, MXR and Ph-a, in BCRP-HEK293 cells, with or without 100 μM concentrations of drugs of abuse and maintenance treatments. Bup was the most potent inhibitor of BCRP-mediated MXR efflux, while 50 μM concentrations of norBup > Ibo and THC were much less potent. Bup, norBup and Ibo actions were concentration-dependent. Bup was the most potent BCRP inhibitor when tested with MXR (Fig. 3); however, it did not inhibit BCRP-mediated transport of Met or several other compounds. These results were confirmed using Ph-a as a probe of BCRP activity. The inhibition profiles were quite similar to those obtained using MXR (Fig. 3).

Bidirectional transport study

The actions of compounds that significantly inhibited P-gp and/or BCRP by flow cytometry were studied on monolayers of MDR1- and BCRP-MDCKII-transfected cells. The transport ratios of norBup, S-Met and R-Met in untransfected MDCKII-parental cells were: 1.7 (norBup), 1.2 (S-Met) and 1.1 (R-Met). P-gp- and BCRP-mediated transport in MDCK-transfected cell lines was validated using Rh-123 as substrate for P-gp and [3H]prazosin for BCRP (Table 1). The specificity of transport was assessed using 5 μM PSC833 to inhibit P-gp and 10 μM FTC to inhibit BCRP.

P-gp transport study

P-gp-mediated transport of Bup, norBup and Met was tested in MDCK-MDR1 cells. Both R-Met and S-Met were poorly transported by P-gp, with no significant enantio-selectivity. Met polarized transport was completely blocked by PSC833.

Bup bidirectional transport was difficult to assess because of its strong unspecific binding to the polystyrene plate or to the cell monolayer. The mass balance at the end of incubation revealed that ~30% of Bup was not recovered. Using high concentrations of unlabelled Bup with radiolabelled Bup or BSA did not significantly improve this mass balance. Thus, P_app values regarding Bup should be carefully interpreted. We were never able to show any polarized Bup transport or any influence of specific inhibitors on Bup P_app in similar conditions when testing the same A > B or B > A directions.

In contrast, norBup had a surprisingly high relative P_app in the A > B direction, close to that of CNS compounds like Met. norBup transport through the MDR1-MDCK monolayers was strongly influenced by P-gp, with a transport ratio of ~11. Hence, norBup is a good substrate for P-gp in this model.

BCRP transport study

BCRP-mediated transport of the potent BCRP inhibitors Bup and norBup was investigated. No significant
Fig. 2. Inhibition of P-gp by norBup, Bup, lbo, Met, morphine and THC. Data were obtained by flow cytometric assay using (a) calcein-AM or (b) Rh-123 as probes for P-gp-mediated efflux from HEK293-MDR1 cells. The accumulation index was calculated by dividing the intracellular accumulation of fluorescent probe in the presence of test compound by the accumulation in the absence of inhibitor. PSC833 was used as a positive control for P-gp inhibition. * p < 0.05, ** p < 0.01, *** p < 0.001, n.s., no significant difference.

Fig. 3. Inhibition of BCRP by Bup, norBup and lbo. Data were obtained by flow cytometric assay using (a) MXR or (b) Ph-a as probes for BCRP-mediated efflux from HEK293-BCRP cells. The accumulation index was calculated by dividing the intracellular accumulation of fluorescent probe in the presence of the test compound by the accumulation in the absence of the inhibitor. FTC was used as a positive control for BCRP inhibition. * p < 0.05, ** p < 0.01, *** p < 0.001, n.s., no significant difference.
polarized transport through the cell monolayer was measured.

Discussion

The active transport of drugs across physiological barriers like the gut and the BBB is now recognized as a source of variability in the pharmacological responses of individuals to these drugs. Even if drugs of abuse are psycho-active compounds that readily cross biological membranes, they may also be actively transported, or may even inhibit transporter proteins. P-gp and BCRP are considered to be involved in the active efflux system at the BBB that limits the entry of drugs into the brain. However, only few data have been published on P-gp-mediated or BCRP-mediated transport of drugs of abuse and maintenance treatments, only focusing on opiates, cannabinoids, and Met. Moreover, heterogeneous experimental models and species were used, making it difficult to reach any definitive conclusion regarding their actions in humans.

We first tested drugs in parallel conditions to determine whether they are inhibitors of human P-gp and BCRP. The capacity of drugs to inhibit P-gp was assessed by flow cytometry using two fluorescent P-gp substrates, calcein-AM and Rh-123. Previous studies on MDRI-MDCKII cells demonstrated that highly permeable compounds inhibit transporters, but provided no evidence of transport across cell monolayers. They also established that the calcein-AM assay is much more likely to detect interactions with P-gp than are bidirectional studies (Polli et al. 2001). This inhibition screening is usually performed at high concentrations (100 μM) that are in no way related to what might happen with the clinically relevant concentrations that could occur in humans. Only compounds that significantly inhibited P-gp and BCRP-mediated transport as measured by flow cytometry were investigated in bidirectional studies on MDCKII cells.

Studies with calcein-AM showed that P-gp was only inhibited by Ibo, and to a lesser extent by THC. None of the other compounds tested at 100 μM (d-amphetamine, MDMA, MDA, cocaine, cocaethylene, nicotine, ketamine, Nal, and morhpine) had any significant effect. The inhibition of P-gp by cannabinoids from marijuana was investigated by Holland et al. (2006) using Rh-123 to probe P-gp function. They did find that 50 μM THC slightly inhibited P-gp-mediated calcein-AM transport, as reported by Zhu et al. (2006a) using another cell model. Thus, our results showed that Rh-123 is a good P-gp substrate, although not suitable for use alone to screen for P-gp inhibition as false-negative results (as for THC) are possible. By contrast, several P-gp substrates should be used before coming to any conclusion on the inability of a given

Table 1. Bidirectional transport across MDR1- and BCRP-MDCKII transfected cells

<table>
<thead>
<tr>
<th>Compound</th>
<th>Treatment</th>
<th>MDCK-MDR1</th>
<th>MDCK-BCRP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$P_{app(A>B)}$ (nm/s)</td>
<td>$P_{app(B>A)}$ (nm/s)</td>
</tr>
<tr>
<td>Rh-123 10 μM</td>
<td>Control</td>
<td>8.3±0.4</td>
<td>196.3±22.1***</td>
</tr>
<tr>
<td></td>
<td>Inhibition</td>
<td>9.0±0.8</td>
<td>35.8±7.5</td>
</tr>
<tr>
<td>[3H]Prazosin 5 μM</td>
<td>Control</td>
<td>131.6±5.8</td>
<td>234.1±13.9</td>
</tr>
<tr>
<td></td>
<td>Inhibition</td>
<td>11.3±5.5</td>
<td>94.8±15.0</td>
</tr>
<tr>
<td>Bup 2 nm + 1%</td>
<td>Control</td>
<td>148.7±6.8</td>
<td>166.0±3.2</td>
</tr>
<tr>
<td>BSA</td>
<td>Inhibition</td>
<td>155.3±15.2</td>
<td>159.7±8.4</td>
</tr>
<tr>
<td>Bup 5 μM</td>
<td>Control</td>
<td>105.3±19.3</td>
<td>107.6±32.0</td>
</tr>
<tr>
<td></td>
<td>Inhibition</td>
<td>103.5±23.3</td>
<td>113.9±45.5</td>
</tr>
<tr>
<td>NorBup 10 μM</td>
<td>Control</td>
<td>52.3±2.0</td>
<td>594.2±55.5***</td>
</tr>
<tr>
<td></td>
<td>Inhibition</td>
<td>219.5±53.5</td>
<td>208.7±16.8</td>
</tr>
<tr>
<td>(R)-Met 5 μM</td>
<td>Control</td>
<td>62.5±7.2</td>
<td>117.8±19.7***</td>
</tr>
<tr>
<td></td>
<td>Inhibition</td>
<td>96.8±5.0</td>
<td>104.9±19.9</td>
</tr>
<tr>
<td>(S)-Met 5 μM</td>
<td>Control</td>
<td>62.2±1.2</td>
<td>118.7±10.8*</td>
</tr>
<tr>
<td></td>
<td>Inhibition</td>
<td>114.4±31.9</td>
<td>102.0±25.4</td>
</tr>
</tbody>
</table>

Data are presented as means P_{app} (nm/s)±s.d. n=6–9. Transport ratio was obtained from $P_{app(B>A)}/P_{app(A>B)}$.

*p<0.05, **p<0.01, ***p<0.001.
drug to inhibit P-gp. The conflicting results obtained with the two fluorescent probes may be due to different P-gp substrate-binding sites (Martin et al. 2000). P-gp inhibitors preferentially interact with the calcine-AM binding site of P-gp. However, the clinical relevance of P-gp inhibition by THC is difficult to assess since concentrations that inhibit P-gp in vitro are far higher than plasma THC concentrations usually observed in patients (peak concentrations of about 77 ng/ml–250 nm) (Ohlsson et al. 1980). Hence, THC is unlikely to inhibit P-gp at the human BBB. It was recently shown that THC bioavailability is greater in P-gp-deficient than in wild-type mice (Bonhomme-Faivre et al. 2008), suggesting that THC is efficiently transported by murine intestinal or biliary P-gp. We also find that THC slightly inhibited BCRP, in agreement with Holland et al. (2007). Thus the impact of the interaction of cannabinoids with ABC transporters remains important.

We assessed the capacity of maintenance therapies (Met and Bup) and norBup, the main active Bup metabolite, to inhibit P-gp. Met was found to be a powerful inhibitor of P-gp-mediated calcine-AM transport, as previously reported for Rh-123 in caco-2 cells (Störmer et al. 2001). Met is also a good substrate of murine P-gp, its concentration in the brains of P-gp-deficient Mdr1a+/− mice is 15- to 23-fold higher than in the brains of Mdr1a+/+ mice (Dagenais et al. 2004; Wang et al. 2004) for (R)-Met and (S)-Met, respectively. Met pharmacokinetics in rats and humans have been extensively described as altered by P-gp during its absorption and distribution phases (Bouer et al. 1999; Crettol et al. 2008; Kharasch et al. 2004; Levran et al. 2008; Ortega et al. 2007; Rodríguez et al. 2004). P-gp-mediated transport significantly alters the pharmacological response to Met, and genetic variants influence the required Met dose to prevent withdrawal symptoms and relapse in maintained patients (Levran et al. 2008). Transplacental Met transfer through human lobules is also increased by the P-gp inhibitor GF120918 (Nanovskaya et al. 2005). Studies with our in-vitro models clearly showed Met transport by human P-gp, while Met’s ability to inhibit P-gp was confirmed using both fluorescent P-gp substrates. However, Met efflux transport ratio was only ~2, far below Met brain concentration ratio in P-gp-deficient mice (Dagenais et al. 2004; Wang et al. 2004), but close to that observed with another human hMDRI-LLCPK cell line over-expressing P-gp (Crettol et al. 2007). Murine P-gp may therefore be a better transporter of Met than human P-gp. Moreover, we detected no enantio-selective P-gp-mediated transport of Met in MDCK-MDR1 cells, in contrast to previous results showing a slightly better transport of S-Met by human P-gp (Crettol et al. 2007). Quinidine (600 mg p.o.) increases the CNS effects of loperamide in humans, independently from changes in its plasma concentrations (Sadeque et al. 2000). This indicates that quinidine efficiently inhibits P-gp at the BBB. Kharasch et al. (2004) used a similar clinical design (infusion of 600 mg quinidine for 5 min) to demonstrate that P-gp does not change the pharmacodynamic effects of intravenous Met. This agrees with our data, since Met was shown to be a poorer substrate of human P-gp than loperamide (high efflux ratio ~10 in transport studies using MDCK-MDR1 cells in the same experimental conditions as ours) (Mahar Doan et al. 2002). We have also shown that Met does not interact with human BCRP.

We studied the interactions of Bup and norBup with ABC transporters, since P-gp and/or BCRP may modulate their pharmacological activity or toxicity. There are very few published data on the interaction of Bup with ABC transporters. Bup is not transported by P-gp on human placental lobules (Nekhayeva et al. 2006), or by the P-gp on caco-2 cells (Hassan et al. 2009), although some author have suggested that it is transported by P-gp at the mouse BBB (Suzuki et al. 2007). We found no transport of Bup by P-gp or BCRP, although Bup strongly inhibited P-gp at high extracellular concentrations. The plasma concentrations of Bup during maintenance treatment are 1–5 ng/ml (2–11 nm), far below the concentration that inhibits P-gp in vitro. Bup may thus not alter the concentration or effect of any co-administered drug that is a P-gp substrate.

We showed that norBup, the main active N-dealkylated Bup metabolite, is a very good P-gp substrate, with a transport efflux ratio of ~11. This value is close to the transport efflux ratio of loperamide. Inhibition of P-gp leads to a huge increase in the CNS effects of this drug in humans (Sadeque et al. 2000). Similarly, Yassen et al. (2007) have suggested that norBUP is actively transported by P-gp because of its particular pharmacokinetic–pharmacodynamic profile. Thus, given its substantial P-gp-mediated transport, we may question the exact role of norBup in vivo in comparison to Bup in both therapeutic and toxic conditions. norBup has always been believed to make only a minor contribution to clinical effects, as it has a lower intrinsic activity than Bup (Huang et al. 2001; Ohtani et al. 1995), given that the plasma concentrations of the two molecules are similar in humans treated with Bup. However, we believe that this should be re-examined in the light of the finding that P-gp-mediated transport of norBup is greater than that of Bup. Similarly, as Bup is a partial opioid agonist with ‘ceiling respiratory
effects’ (Walsh et al. 1994), norBup contribution to Bup-attributed respiratory depression in vivo has been questioned (Hreiche et al. 2006; Megarbane et al. 2006a). However, CYP3A induction, which enhances norBup concentrations in plasma, did not increase BUP-related respiratory effects in rats (Hreiche et al. 2006). Thus, BBB permeability to norBup remains controversial; however, our results may suggest that norBup passage through the BBB could be decreased by P-gp. Accordingly, once P-gp is inhibited, norBup concentrations in the brain could be dramatically increased, contributing to Bup toxicity. Combination of P-gp inhibitors with Bup may thus represent a real concern, leading to clinically relevant drug–drug interactions. Nevertheless, as benzodiazepines are not considered to be significant P-gp inhibitors, it is unlikely that a P-gp-related mechanism can be proposed to explain Bup-related respiratory toxicity commonly observed in drug addicts due to a combination of Bup and benzodiazepine (Megarbane et al. 2006b). Moreover, the plasma concentrations usually observed in maintained patients (about 1.10 ng/ml–2.7 nm), (Kuhlman et al. 1998) are far below the concentration used in our inhibition screening (25–100 μM), which raises doubts about the ability of norBup to inhibit P-gp in vivo. Thus, the exact consequences of inhibiting P-gp for Bup toxicity in humans remain to be evaluated.

Bup, norBup and Ibo are all significant inhibitors of the efflux of MXR or Ph-a in HEK293-BCRP cells, while Met is not. This confirms that the recovery of P-gp and BCRP substrates is not absolute and justifies systematic BCRP transport studies.

Three other drugs of abuse, D-amphetamine, MDMA and MDA, did not inhibit the transporters tested. Hence, neither P-gp nor BCRP are involved in the transport of D-amphetamine, MDMA or MDA. The polarized transport of MDMA in MDCK and caco-2 cells has never been attributed to P-gp, but to another transport system (Bertelsen et al. 2006). We have shown that BCRP should not be considered to be responsible for this transport. Zhu et al. (2006b, 2008) showed that that P-gp has no apparent effect on the pharmacokinetics and pharmacodynamics of D-amphetamine either in vivo or in vitro. They found that 100 μM D-amphetamine does not inhibit the P-gp-mediated transport of Rh-123. Much higher concentrations of D-amphetamine (200 and 500 μM) were very slightly inhibitory. Inhibition was also detected using doxorubicin (which is also transported by mutant BCRP protein, according to Robey et al. 2003) as a functional probe. However they found no P-gp-mediated transport of D-amphetamine in LLC-PK1/MDR1 cells using an uptake assay. This was recently confirmed in a caco-2 bidirectional study (Crowe & Diep, 2008). Our results also suggest that wild-type BCRP is not involved in D-amphetamine transport. High concentrations of morphine also did not inhibit the transport of either P-gp or BCRP. Human P-gp was reported to poorly transport morphine in vitro (Wandel et al. 2002), but this has not been confirmed (Feng et al. 2008; Schinkel et al. 1995). We detected no interaction between morphine and human P-gp or BCRP in our model. Similarly, nicotine did not interact with P-gp in our study, as previously reported (Wang et al. 2005). Finally, we find that cocaine did not interact with P-gp, although its polarized transport across bovine brain microvessel endothelial cells suggested that bovine P-gp may transport it (Raje et al. 2003).

In conclusion, we have demonstrated the P-gp-mediated transport of norBup, and to a lesser extent of Met, but no involvement of BCRP. However, the clinical consequences of P-gp-mediated Met and norBup transport as well as any P-gp-mediated drug–drug interactions remain to be investigated in vivo.

Acknowledgements
We thank Dr Robert W. Robey (National Institutes of Health, USA) and Dr A. H. Schinkel (National Cancer Institute, The Netherlands) for their advice and for providing cell clones. The English text was checked by Dr Owen Parkes. We also thank Françoise Grelac for technical assistance.

Statement of Interest
None.

References

